Mutation-, aging-, and gene dosage-dependent accumulation of neuroserpin (G392E) in endoplasmic reticula and lysosomes of neurons in transgenic mice.
نویسندگان
چکیده
Mutations in human neuroserpin gene cause an autosomal dementia, familial encephalopathy with neuroserpin inclusion bodies (FENIB). We generated and analyzed transgenic mice expressing high levels of either FENIB-type (G392E) or wild-type human neuroserpin in neurons of the central nervous system. G392E neuroserpin accumulated age-dependently in neurons of the neocortex, thalamus, amygdala, pons, and spinal cord of homozygous transgenic mice. Such accumulations were not observed in hemizygous transgenic mice nor in transgenic mice for wild-type neuroserpin. In differential centrifugation of brain homogenates, G392E neuroserpin recovered in the nucleus-rich fraction dramatically increased along with aging, suggesting that the aggregations gradually increase their densities presumably by their conversion into heavier and more compact configurations. In immunoelectron microscopical analyses, immunopositivities for G392E neuroserpin were found not only in endoplasmic reticulum but also in lysosomes. G392E neuroserpin transgenic mice were much more susceptible to seizures induced by kainate administration than nontransgenic mice. Overall, G392E neuroserpin accumulated in the central nervous system neurons of transgenic mice in mutation-, aging-, and gene dosage-dependent manners. The established transgenic mice will be valuable to elucidate not only mechanisms for the formation of G392E neuroserpin aggregations but also pathways for the degradation and/or clearance of the already formed aggregations in neurons.
منابع مشابه
Neuroserpin polymers cause oxidative stress in a neuronal model of the dementia FENIB
The serpinopathies are human pathologies caused by mutations that promote polymerisation and intracellular deposition of proteins of the serpin superfamily, leading to a poorly understood cell toxicity. The dementia FENIB is caused by polymerisation of the neuronal serpin neuroserpin (NS) within the endoplasmic reticulum (ER) of neurons. With the aim of understanding the toxicity due to intrace...
متن کاملSterol metabolism regulates neuroserpin polymer degradation in the absence of the unfolded protein response in the dementia FENIB
Mutants of neuroserpin are retained as polymers within the endoplasmic reticulum (ER) of neurones to cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. The cellular consequences are unusual in that the ordered polymers activate the ER overload response (EOR) in the absence of the canonical unfolded protein response. We use both cell lines a...
متن کاملPolymer toxicity in neurodegeneration FENIB
Many neurodegenerative conditions, including Alzheimer’s, Parkinson’s and Huntington’s diseases, the prion encephalopathies and amyotrophic lateral sclerosis, are now recognised as protein conformational diseases, an ample group of pathologies characterised by the transition of wild type or mutated proteins to aggregationprone conformations. This leads to their intracellular and/ or extracellul...
متن کاملThe intracellular accumulation of polymeric neuroserpin explains the severity of the dementia FENIB
Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is an autosomal dominant dementia that is characterized by the retention of polymers of neuroserpin as inclusions within the endoplasmic reticulum (ER) of neurons. We have developed monoclonal antibodies that detect polymerized neuroserpin and have used COS-7 cells, stably transfected PC12 cell lines and transgenic Drosophila mel...
متن کاملInteractions between N‐linked glycosylation and polymerisation of neuroserpin within the endoplasmic reticulum
The neuronal serpin neuroserpin undergoes polymerisation as a consequence of point mutations that alter its conformational stability, leading to a neurodegenerative dementia called familial encephalopathy with neuroserpin inclusion bodies (FENIB). Neuroserpin is a glycoprotein with predicted glycosylation sites at asparagines 157, 321 and 401. We used site-directed mutagenesis, transient transf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 283 51 شماره
صفحات -
تاریخ انتشار 2008